Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
J Appl Oral Sci ; 32: e20230382, 2024.
Article in English | MEDLINE | ID: mdl-38747806

ABSTRACT

OBJECTIVES: This review highlights the existence and association of Acinetobacter baumannii with the oro-dental diseases, transforming this systemic pathogen into an oral pathogen. The review also hypothesizes possible reasons for the categorization of this pathogen as code blue due to its stealthy entry into the oral cavity. METHODOLOGY: Study data were retrieved from various search engines reporting specifically on the association of A. baumannii in dental diseases and tray set-ups. Articles were also examined regarding obtained outcomes on A. baumannii biofilm formation, iron acquisitions, magnitude of antimicrobial resistance, and its role in the oral cancers. RESULTS: A. baumannii is associated with the oro-dental diseases and various virulence factors attribute for the establishment and progression of oro-mucosal infections. Its presence in the oral cavity is frequent in oral microbiomes, conditions of impaired host immunity, age related illnesses, and hospitalized individuals. Many sources also contribute for its prevalence in the dental health care environment and the presence of drug resistant traits is also observed. Its association with oral cancers and oral squamous cell carcinoma is also evident. CONCLUSIONS: The review calls for awareness on the emergence of A. baumannii in dental clinics and for the need for educational programs to monitor and control the sudden outbreaks of such virulent and resistant traits in the dental health care settings.


Subject(s)
Acinetobacter baumannii , Biofilms , Humans , Acinetobacter baumannii/pathogenicity , Acinetobacter Infections/microbiology , Mouth Neoplasms/microbiology , Mouth/microbiology , Drug Resistance, Bacterial , Virulence Factors/analysis , Mouth Diseases/microbiology
2.
BMC Oral Health ; 24(1): 518, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698370

ABSTRACT

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) is a microbial risk factor whose presence increases the risk of oral squamous cell carcinoma (OSCC) progression. However, whether it can promote the proliferation of OSCC cells remains unknown. METHODS: In this study, we investigated F. nucleatum effect on OSCC cell proliferation using in vitro and in vivo experiments. RESULTS: Our results showed that F. nucleatum promoted OSCC cell proliferation, doubling the cell count after 72 h (CCK-8 assay). Cell cycle analysis revealed G2/M phase arrest. F. nucleatum interaction with CDH1 triggered phosphorylation, upregulating downstream protein ß-catenin and activating cyclinD1 and Myc. Notably, F. nucleatum did not affect noncancerous cells, unrelated to CDH1 expression levels in CAL27 cells. Overexpression of phosphorylated CDH1 in 293T cells did not upregulate ß-catenin and cycle-related genes. In vivo BALB/c nude experiments showed increased tumor volume and Ki-67 proliferation index after F. nucleatum intervention. CONCLUSION: Our study suggests that F. nucleatum promotes OSCC cell proliferation through the CDH1/ß-catenin pathway, advancing our understanding of its role in OSCC progression and highlighting its potential as a therapeutic target.


Subject(s)
Cadherins , Carcinoma, Squamous Cell , Cell Proliferation , Fusobacterium nucleatum , Mice, Inbred BALB C , Mice, Nude , Mouth Neoplasms , beta Catenin , Cadherins/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/microbiology , beta Catenin/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/microbiology , Humans , Animals , Mice , Cell Line, Tumor , Antigens, CD/metabolism , Signal Transduction
3.
Arch Microbiol ; 206(6): 244, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702412

ABSTRACT

Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.


Subject(s)
Aggregatibacter actinomycetemcomitans , Apoptosis , Cell Proliferation , Extracellular Vesicles , Mouth Neoplasms , Aggregatibacter actinomycetemcomitans/genetics , Extracellular Vesicles/metabolism , Mouth Neoplasms/microbiology , Mouth Neoplasms/pathology , Humans , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Movement , Fusobacterium nucleatum/physiology , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/pathology , Porphyromonas gingivalis/genetics
4.
J Cancer Res Clin Oncol ; 150(4): 206, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644421

ABSTRACT

PURPOSE: Periodontitis-associated bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are closely linked to the risk of oral squamous cell carcinoma (OSCC). Emerging studies have indicated that another common periodontal pathogen, Prevotella intermedia (P. intermedia), is enriched in OSCC and could affect the occurrence and progression of OSCC. Our aim is to determine the effects of P. intermedia on the progression of OSCC and the role of antibiotics in reversing these effects. METHODS: In this study, a murine xenograft model of OSCC was established, and the mice were injected intratumorally with PBS (control group), P. intermedia (P.i group), or P. intermedia combined with an antibiotic cocktail administration (P.i + ABX group), respectively. The effects of P. intermedia and ABX administration on xenograft tumor growth, invasion, angiogenesis, and metastasis were investigated by tumor volume measurement and histopathological examination. Enzyme-linked immunosorbent assay (ELISA) was used to investigate the changes in serum cytokine levels. Immunohistochemistry (IHC) was adopted to analyze the alterations in the levels of inflammatory cytokines and infiltrated immune cells in OSCC tissues of xenograft tumors. Transcriptome sequencing and analysis were conducted to determine differential expression genes among various groups. RESULTS: Compared with the control treatment, P. intermedia treatment significantly promoted tumor growth, invasion, angiogenesis, and metastasis, markedly affected the levels of inflammatory cytokines, and markedly altered M2 macrophages and regulatory T cells (Tregs) infiltration in the tumor microenvironment. However, ABX administration clearly abolished these effects of P. intermedia. Transcriptome and immunohistochemical analyses revealed that P. intermedia infection increased the expression of interferon-stimulated gene 15 (ISG15). Correlation analysis indicated that the expression level of ISG15 was positively correlated with the Ki67 expression level, microvessel density, serum concentrations and tissue expression levels of inflammatory cytokines, and quantities of infiltrated M2 macrophages and Tregs. However, it is negatively correlated with the quantities of infiltrated CD4+ and CD8+ T cells. CONCLUSION: In conclusion, intratumoral P. intermedia infection aggravated OSCC progression, which may be achieved through upregulation of ISG15. This study sheds new light on the possible pathogenic mechanism of intratumoral P. intermedia in OSCC progression, which could be a prospective target for OSCC prevention and treatment.


Subject(s)
Cytokines , Disease Progression , Mouth Neoplasms , Prevotella intermedia , Ubiquitins , Up-Regulation , Animals , Mice , Cytokines/metabolism , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/microbiology , Ubiquitins/metabolism , Squamous Cell Carcinoma of Head and Neck/microbiology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Xenograft Model Antitumor Assays , Mice, Nude , Bacteroidaceae Infections/microbiology , Cell Line, Tumor , Mice, Inbred BALB C , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/drug therapy , Anti-Bacterial Agents/pharmacology
5.
BMC Cancer ; 24(1): 534, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671413

ABSTRACT

BACKGROUND: While there is an understanding of the association between the expression of Porphyromonas gingivalis (P. gingivalis) and prognosis of oral squamous cell carcinoma (OSCC), significance specially to address the relevance between different immunohistochemical intensities of P. gingivalis and tumor-associated macrophages (TAMs) in OSCC tissue and related clinicopathologic characteristics has not been well investigated. The present study aimed to investigate the pathological features related to M2-TAM in P. gingivalis-infected OSCC and ascertain its clinical relevance with patients' prognosis. METHODS: A prospective cohort study was designed to comparatively analyze 200 patients from June 2008 to June 2020. Bioinformatics analyses were implemented to identify DOK3 as a key molecule and to appraise immunocyte infiltration using Gene Expression Omnibus and The Cancer Genome Atlas databases. Immunohistochemical evaluation was performed to analyze the association between the expression levels of P. gingivalis, DOK3, and M2-TAM and clinicopathological variables using Fisher's exact test or Pearson's chi-square test. Cox analysis was used to calculate hazard ratios (HR) with corresponding 95% confidence interval (CI) for various clinicopathological features. The Kaplan-Meier approach and log-rank test were used to plot the survival curves. RESULTS: The expression level of P. gingivalis was positively associated with DOK3 and M2-TAMs expression level (P < 0.001). Parameters, including body mass index, clinical stage, recurrence, tumor differentiation, and P. gingivalis, DOK3, and M2-TAM immunoexpression levels, affected the prognosis of patients with OSCC (all P < 0.05). In addition, P. gingivalis (HR = 1.674, 95%CI 1.216-4.142, P = 0.012), DOK3 (HR = 1.881, 95%CI 1.433-3.457, P = 0.042), and M2-TAM (HR = 1.649, 95%CI 0.824-3.082, P = 0.034) were significantly associated with the 10-year cumulative survival rate. CONCLUSIONS: Elevated expression of P. gingivalis and DOK3 indicates M2-TAM infiltration and unfavorable prognosis of OSCC, and could be considered as three novel independent risk factors for predicting the prognosis of OSCC.


Subject(s)
Bacteroidaceae Infections , Mouth Neoplasms , Porphyromonas gingivalis , Tumor-Associated Macrophages , Humans , Mouth Neoplasms/microbiology , Mouth Neoplasms/pathology , Mouth Neoplasms/mortality , Mouth Neoplasms/immunology , Male , Female , Prognosis , Middle Aged , China/epidemiology , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Prospective Studies , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Adult , Biomarkers, Tumor/metabolism
7.
Inflamm Res ; 73(5): 693-705, 2024 May.
Article in English | MEDLINE | ID: mdl-38150024

ABSTRACT

BACKGROUND: The aim of this study was to investigate the impact of Porphyromonas gingivalis (P. gingivalis) on the progression of oral squamous cell carcinoma (OSCC) through neutrophil extracellular traps (NETs) in the tumor immune microenvironment. METHODS: The expression of NETs-related markers was identified through immunohistochemistry, immunofluorescence, and Western blotting in different clinical stages of OSCC samples. The relationship between NETs-related markers and clinicopathological characteristics in 180 samples was analyzed using immunohistochemistry data. Furthermore, the ability to predict the prognosis of OSCC patients was determined by ROC curve analysis and survival analysis. The effect of P. gingivalis on the release of NETs was identified through immunofluorescence and immunohistochemistry, both in vitro and in vivo. CAL27 and SCC25 cell lines were subjected to NETs stimulation to elucidate the influence of NETs on various cellular processes, including cell proliferation, migration, invasion, and metastasis in vitro. Furthermore, the impact of NETs on the growth and metastatic potential of OSCC was assessed using in vivo models involving tumor-bearing mice and tumor metastasis mouse models. RESULTS: Immunochemistry analysis revealed a significant correlation between the NETs-related markers and clinical stage, living status as well as TN stage. P. gingivalis has demonstrated its ability to effectively induce the release of NETs both in vivo and in vitro. NETs have the potential to facilitate cell migration, invasion, and colony formation. Moreover, in vivo experiments have demonstrated that NETs play a pivotal role in promoting tumor metastasis. CONCLUSION: High expression of NETs-related markers demonstrates a strong correlation with the progression of OSCC. Inhibition of the NETs release process stimulated by P. gingivalis and targeted NETs could potentially open up a novel avenue in the field of immunotherapy for patients afflicted with OSCC.


Subject(s)
Carcinoma, Squamous Cell , Extracellular Traps , Mouth Neoplasms , Porphyromonas gingivalis , Tumor Microenvironment , Porphyromonas gingivalis/immunology , Humans , Extracellular Traps/immunology , Extracellular Traps/metabolism , Tumor Microenvironment/immunology , Animals , Mouth Neoplasms/immunology , Mouth Neoplasms/pathology , Mouth Neoplasms/microbiology , Cell Line, Tumor , Female , Male , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Middle Aged , Mice , Disease Progression , Mice, Inbred BALB C , Cell Proliferation , Cell Movement , Mice, Nude , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Neutrophils/immunology , Aged
8.
Microbiome ; 11(1): 171, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37542310

ABSTRACT

BACKGROUND: Treating oral squamous cell carcinoma (OSCC) introduces new ecological environments in the oral cavity. This is expected to cause changes in the oral microbiome. The purpose of this study was to gain new information on the salivary microbiome of OSCC patients in order to improve the aftercare of OSCC patients. The aims of this study were to investigate possible changes in the salivary microbiome profiles of OSCC patients before and after cancer treatment and to compare these changes with the profiles of healthy controls. PATIENTS AND METHODS: Paraffin-stimulated whole saliva samples were collected, and the salivary flow rate was measured from 99 OSCC patients prior to surgical resection of the tumor and other adjuvant therapy. After treatment, 28 OSCC patients were re-examined with a mean follow-up time of 48 months. In addition, 101 healthy controls were examined and sampled. After DNA extraction and purification, the V4 hypervariable region of the 16S rRNA gene was amplified and sequenced using Illumina MiSeq. The merged read pairs were denoised using UNOISE3, mapped to zero-radius operational taxonomic units (zOTUs), and the representative zOTU sequences were assigned a taxonomy using HOMD. Descriptive statistics were used to study the differences in the microbial profiles of OSCC patients before and after treatment and in comparison to healthy controls. RESULTS: At baseline, the OSCC patients showed a higher relative abundance of zOTUs classified as Streptococcus anginosus, Abiotrophia defectiva, and Fusobacterium nucleatum. The microbial profiles differed significantly between OSCC patients and healthy controls (F = 5.9, p < 0.001). Alpha diversity of the salivary microbiome of OSCC patients was decreased at the follow-up, and the microbial profiles differed significantly from the pre-treatment (p < 0.001) and from that of healthy controls (p < 0.001). CONCLUSIONS: OSCC patients' salivary microbiome profile had a higher abundance of potentially pathogenic bacteria compared to healthy controls. Treatment of the OSCC caused a significant decrease in alpha diversity and increase in variability of the salivary microbiome, which was still evident after several years of follow-up. OSCC patients may benefit from preventive measures, such as the use of pre- or probiotics, salivary substitutes, or dietary counseling. Video Abstract.


Subject(s)
Carcinoma, Squamous Cell , Microbiota , Mouth Neoplasms , Humans , Mouth Neoplasms/therapy , Mouth Neoplasms/microbiology , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/microbiology , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Microbiota/genetics
9.
mBio ; 14(3): e0044723, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37067414

ABSTRACT

The association between Candida albicans (C. albicans) and oral cancer (OC) has been noticed for a long time, but the mechanisms for C. albicans promoting OC are rarely explored. In this study, we determined that C. albicans infection promoted OC incidence in a 4-nitroquinoline 1-oxide (4NQO)-induced mouse tongue carcinogenesis model as well as promoted OC progression in a tongue tumor-bearing mouse model (C3H/HeN-SCC VII). We then demonstrated that tumor-associated macrophage (TAMs) infiltration was elevated during C. albicans infection. Meanwhile, the attracted TAMs polarized into M2-like macrophages with high expression of programmed death ligand 1 (PD-L1) and galectin-9 (GAL-9). Further analysis suggested that the interleukin (IL)-17A/IL-17RA pathway activated in OC cells was a contributor to the excessive TAMs infiltration in C. albicans-infected mice. Thus, we constructed IL-17A neutralization and macrophage depletion experiments in C3H/HeN-SCC VII mice to explore the role of IL-17A/IL-17RA and TAMs in OC development caused by C. albicans infection. The results showed that both IL-17A neutralization and macrophage depletion tended to reduce the TAMs number and tumor size in mice with C. albicans infection. Collectively, our finding revealed that C. albicans promoted OC development via the IL-17A/IL-17RA-macrophage axis, opening perspectives for revealing C. albicans-tumor immune microenvironment links. IMPORTANCE The relationship between fungi and cancer is gradually receiving attention. Among them, some clinical evidence has shown that Candida may be a contributor to gastrointestinal cancers, especially oral cancer. However, the underlying mechanisms for Candida promoting oral cancer need to be explored. For this reason, this study demonstrated the role of C. albicans in oral cancer development. Moreover, this study revealed the underlying mechanisms for C. albicans promoting oral cancer from the perspective of the tumor immune microenvironment.


Subject(s)
Candida albicans , Candidiasis , Mouth Neoplasms , Animals , Mice , Candida albicans/pathogenicity , Candidiasis/complications , Interleukin-17/metabolism , Macrophages , Mice, Inbred C3H , Mouth Neoplasms/microbiology , Tumor Microenvironment
10.
Otolaryngol Head Neck Surg ; 168(6): 1443-1452, 2023 06.
Article in English | MEDLINE | ID: mdl-36939272

ABSTRACT

OBJECTIVE: To examine the oral microbiome in the context of oral cavity squamous cell carcinoma. STUDY DESIGN: Basic science research. SETTING: Academic medical center. METHODS: Oral swabs were collected from patients presenting to the operating room for management of oral cavity squamous cell carcinoma and from age- and sex-matched control patients receiving surgery for unrelated benign conditions. 16S ribosomal RNA (rRNA) sequencing was performed on genetic material obtained from swabs. A bacterial rRNA gene library was created and sequence reads were sorted into taxonomic units. RESULTS: Thirty-one control patients (17 males) and 35 cancer patients (21 males) were enrolled. Ages ranged from 23 to 89 (median 63) for control patients and 35 to 86 (median 66) for cancer patients. Sixty-one percent of control patients and 63% of cancer patients were smokers. 16S analyses demonstrated a significant decrease in Streptococcus genera in oral cancer patients (34.11% vs 21.74% of the population, p = .04). Increases in Fusobacterium, Peptostreptococcus, Parvimonas, and Neisseria were also found. The abundance of these bacteria correlated with tumor T-stage. CONCLUSION: 16S rRNA sequencing demonstrated changes in bacterial populations in oral cavity cancer and its progression compared to noncancer controls. We found increases in bacteria genera that correspond with tumor stage-Fusobacteria, Peptostreptococcus, Parvimonas, Neisseria, and Treponema. These data suggest that oral cancer creates an environment to facilitate foreign bacterial growth, rather than implicating a specific bacterial species in carcinogenesis. These bacteria can be employed as a potential marker for tumor progression or interrogated to better characterize the tumor microenvironment.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Male , Bacteria , Carcinoma, Squamous Cell/microbiology , Head and Neck Neoplasms , Mouth Neoplasms/microbiology , RNA, Ribosomal, 16S/genetics , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment
11.
Int J Cancer ; 152(9): 1903-1915, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36752573

ABSTRACT

The bidirectional association between primary esophageal squamous cell carcinoma (ESCC) and oral cavity squamous cell carcinoma (OSCC) suggests common risk factors and oncogenic molecular processes but it is unclear whether these two cancers display similar patterns of dysbiosis in their upper aerodigestive microbiota (UADM). We conducted a case-control study to characterize the microbial communities in esophageal lavage samples from 49 ESCC patients and oral rinse samples from 91 OSCC patients using 16S rRNA V3-V4 amplicon sequencing. Compared with their respective non-SCC controls from the same anatomical sites, 32 and 45 discriminative bacterial genera were detected in ESCC and OSCC patients, respectively. Interestingly, 20 of them were commonly enriched or depleted in both types of cancer, suggesting a convergent niche adaptation of upper aerodigestive SCC-associated bacteria that may play important roles in the pathogenesis of malignancies. Notably, Fusobacterium, Selenomonas, Peptoanaerobacter and Peptostreptococcus were enriched in both ESCC and OSCC, whereas Streptococcus and Granulicatelia were commonly depleted. We further identified Fusobacterium nucleatum as the most abundant species enriched in the upper aerodigestive SCC microenvironment, and the higher relative abundances of Selenomonas danae and Treponema maroon were positively correlated with smoking. In addition, predicted functional analysis revealed several depleted (eg, lipoic acid and pyruvate metabolism) and enriched (eg, RNA polymerase and nucleotide excision repair) pathways common to both cancers. Our findings reveal a convergent dysbiosis in the UADM between patients with ESCC and OSCC, suggesting a shared niche adaptation of host-microbiota interactions in the pathogenesis of upper aerodigestive tract malignancies.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Head and Neck Neoplasms , Microbiota , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Esophageal Neoplasms/microbiology , Dysbiosis/complications , RNA, Ribosomal, 16S/genetics , Case-Control Studies , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/microbiology , Bacteria/genetics , Microbiota/genetics , Tumor Microenvironment
12.
Mol Oral Microbiol ; 38(1): 9-22, 2023 02.
Article in English | MEDLINE | ID: mdl-36420924

ABSTRACT

Squamous cell carcinoma is the most common malignant tumor of the oral cavity and its adjacent sites, which endangers the physical and mental health of patients and has a complex etiology. Chronic infection is considered to be a risk factor in cancer development. Evidence suggests that periodontal pathogens, such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, are associated with oral squamous cell carcinoma (OSCC). They can stimulate tumorigenesis by promoting epithelial cells proliferation while inhibiting apoptosis and regulating the inflammatory microenvironment. Candida albicans promotes OSCC progression and metastasis through multiple mechanisms. Moreover, oral human papillomavirus (HPV) can induce oropharyngeal squamous cell carcinoma (OPSCC). There is evidence that HPV16 can integrate with host cells' DNA and activate oncogenes. Additionally, oral dysbiosis and synergistic effects in the oral microbial communities can promote cancer development. In this review, we will discuss the biological characteristics of oral microbiome associated with OSCC and OPSCC and then highlight the mechanisms by which oral microbiome is involved in oral oncogenesis, tumor progression, and metastasis. These findings may have positive implications for early diagnosis and treatment of oral cancer.


Subject(s)
Carcinoma, Squamous Cell , Microbiota , Mouth Neoplasms , Humans , Mouth Neoplasms/complications , Mouth Neoplasms/microbiology , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology , Carcinogenesis , Fusobacterium nucleatum , Porphyromonas gingivalis , Tumor Microenvironment
13.
Nature ; 611(7937): 810-817, 2022 11.
Article in English | MEDLINE | ID: mdl-36385528

ABSTRACT

The tumour-associated microbiota is an intrinsic component of the tumour microenvironment across human cancer types1,2. Intratumoral host-microbiota studies have so far largely relied on bulk tissue analysis1-3, which obscures the spatial distribution and localized effect of the microbiota within tumours. Here, by applying in situ spatial-profiling technologies4 and single-cell RNA sequencing5 to oral squamous cell carcinoma and colorectal cancer, we reveal spatial, cellular and molecular host-microbe interactions. We adapted 10x Visium spatial transcriptomics to determine the identity and in situ location of intratumoral microbial communities within patient tissues. Using GeoMx digital spatial profiling6, we show that bacterial communities populate microniches that are less vascularized, highly immuno­suppressive and associated with malignant cells with lower levels of Ki-67 as compared to bacteria-negative tumour regions. We developed a single-cell RNA-sequencing method that we name INVADEseq (invasion-adhesion-directed expression sequencing) and, by applying this to patient tumours, identify cell-associated bacteria and the host cells with which they interact, as well as uncovering alterations in transcriptional pathways that are involved in inflammation, metastasis, cell dormancy and DNA repair. Through functional studies, we show that cancer cells that are infected with bacteria invade their surrounding environment as single cells and recruit myeloid cells to bacterial regions. Collectively, our data reveal that the distribution of the microbiota within a tumour is not random; instead, it is highly organized in microniches with immune and epithelial cell functions that promote cancer progression.


Subject(s)
Carcinoma, Squamous Cell , Colorectal Neoplasms , Host Microbial Interactions , Microbiota , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/pathology , Microbiota/genetics , Microbiota/immunology , Microbiota/physiology , Mouth Neoplasms/genetics , Mouth Neoplasms/immunology , Mouth Neoplasms/microbiology , Mouth Neoplasms/pathology , Myeloid Cells/immunology , Tumor Microenvironment , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Sequence Analysis, RNA , Gene Expression Profiling , Ki-67 Antigen/metabolism , Disease Progression
15.
Microbiol Spectr ; 10(6): e0273722, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36445134

ABSTRACT

Oral microbial dysbiosis contributes to the development of oral squamous cell carcinoma (OSCC). Numerous studies have focused on variations in the oral bacterial microbiota of patients with OSCC. However, similar studies on fungal microbiota, another integral component of the oral microbiota, are scarce. Moreover, there is an evidence gap regarding the role that microecosystems play in different niches of the oral cavity at different stages of oral carcinogenesis. Here, we catalogued the microbial communities in the human oral cavity by profiling saliva, gingival plaque, and mucosal samples at different stages of oral carcinogenesis. We analyzed the oral bacteriome and mycobiome along the health-premalignancy-carcinoma sequence. Some species, including Prevotella intermedia, Porphyromonas endodontalis, Acremonium exuviarum, and Aspergillus fumigatus, were enriched, whereas others, such as Streptococcus salivarius subsp. salivarius, Scapharca broughtonii, Mortierella echinula, and Morchella septimelata, were depleted in OSCC. These findings suggest that an array of signature species, including bacteria and fungi, are closely associated with oral carcinogenesis. OSCC-associated diversity differences, species distinction, and functional alterations were most remarkable in mucosal samples, not in gingival plaque or saliva samples, suggesting an urgent need to define oral carcinogenesis-associated microbial dysbiosis based on the spatial microbiome. IMPORTANCE Abundant oral microorganisms constitute a complex microecosystem within the oral environment of the host, which plays a critical role in the adjustment of various physiological and pathological states of the oral cavity. In this study, we demonstrated that variations in the "core microbiome" may be used to predict carcinogenesis. In addition, sample data collected from multiple oral sites along the health-premalignancy-carcinoma sequence increase our understanding of the microecosystems of different oral niches and their specific changes during oral carcinogenesis. This work provides insight into the roles of bacteria and fungi in OSCC and may contribute to the development of early diagnostic assays and novel treatments.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Mycobiome , Humans , Mouth Neoplasms/complications , Mouth Neoplasms/microbiology , Carcinoma, Squamous Cell/complications , Carcinoma, Squamous Cell/microbiology , Dysbiosis/microbiology , Bacteria/genetics , Fungi/genetics
16.
J Med Microbiol ; 71(8)2022 Aug.
Article in English | MEDLINE | ID: mdl-35921227

ABSTRACT

Introduction. The oral cavity is one of the largest reservoirs of microorganisms and many pathogenic bacteria have been shown to be associated with the aetiology of oral cancers.Gap Statement. Owing to the complexity of oral microbial communities and their unclear relationship with oral cancer, identification of specific bacteria which contribute to oral cancer is a key imperative.Aim. To compare and investigate the variations in the composition of the bacterial microbiome and its functions between patients with oral tumorous lesions and healthy subjects.Methodology. Twenty-seven samples from individuals with oral tumours (five oral benign tumours and 22 oral squamous cell carcinomas) and 15 samples from healthy subjects were collected. Genomic DNA was extracted and the V3-V5 region of the 16S rRNA gene was sequenced. Subsequently, bioinformatic assessment was conducted using QIIME2, PICRUSt and linear discriminant analysis effect size analyses (LEfSe).Results. The oral microbiota was composed mainly of the phyla Proteobacteria (31.76 %, 35.00 %), Bacteroidetes (30.13 %, 25.13 %) and Firmicutes (23.92 %, 17.07 %) in tumorous and healthy individuals, respectively. Neisseria, Prevotella, Fusobacterium, Streptococcus, Capnocytophaga, Veillonella, Haemophilus, Prevotella, Porphyromonas and Leptotrichia were the most abundant genera. Alpha diversity in the tumour group was significantly greater than that in the healthy group (P<0.05). Differential analysis of microbes between groups demonstrated a significantly higher number of Neisseria, Veillonella, Streptococcus, Leptotrichia, Lautropia, Sphingopyxis, Sphingobium, Tannerella, Actinomyces and Rothia in healthy controls compared with the tumour group. However, the genera Treponema, Micrococcus, Pseudomonas, Janthinobacterium, Parvimos, Loktanella, Staphylococcus, Acinetobacter, Catonella, Aggregatibacter and Propionibacterium were significantly higher in the tumour group. Pathways related to cancers, cell motility, environmental adaptation, metabolism and signal transduction were enhanced in the tumour group, while functions associated with immune system diseases, replication, repair and translation were significantly enhanced in the healthy group.Conclusion. Variations in the oral microbiota and its functions showed a correlation with oral tumours. The tumour group showed an increased abundance of some multi-drug-resistant and periodontitis-related pathogens. The significantly altered microbiotas may serve as potential biomarkers or inform combination therapy for oral tumours.


Subject(s)
Microbiota , Mouth Neoplasms , Bacteria/genetics , Humans , Microbiota/genetics , Mouth Neoplasms/microbiology , RNA, Ribosomal, 16S/genetics , Streptococcus
17.
Appl Microbiol Biotechnol ; 106(11): 4115-4128, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35596785

ABSTRACT

Oral cavity squamous cell carcinoma (OSCC) is the most common type of head and neck cancer worldwide. Smokeless tobacco (SLT) has been well proven for its role in oral carcinogenesis due to the abundance of several carcinogens. However, the role of inhabitant microorganisms in the oral cavity of smokeless tobacco users has not yet been well explored in the context of OSCC. Therefore, the present investigation was conceived to analyze the oral bacteriome of smokeless tobacco users having OSCC (CP group). With the assistance of illumina-based sequencing of bacterial-specific V3 hypervariable region of 16S rDNA gene, 71,969 OTUs (operational taxonomic units) were categorized into 18 phyla and 166 genera. The overall analysis revealed that the oral bacteriome of the patients with OSCC, who were smokeless tobacco users, was significantly different compared to the healthy smokeless tobacco users (HTC group) and non-users (HI users). The appearance of 14 significantly abundant genera [FDR (false discovery rate) adjusted probability value of significance (p value) < 0.05] among the CP group showed the prevalence of tobacco-specific nitrosamines forming bacteria (Staphylococcus, Fusobacterium, and Campylobacter). The functional attributes of the oral bacteriome of the CP group can also be correlated with the genes involved in oncogenesis. This study is the first report on the oral bacteriome of Indian patients with OSCC who were chronic tobacco chewers. The results of the present study will pave the way to understand the influence of smokeless tobacco on the oral bacteriome of OSCC patients. KEY POINTS: • Oral bacteriome of OSCC patients differ from healthy smokeless tobacco (SLT) users and SLT non-users. • Smokeless tobacco influences the oral bacteriome of OSCC group. • Oral bacteriome specific diagnostics may be developed for pre-diagnosis of oral cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Tobacco, Smokeless , Bacteria/genetics , Carcinogenesis , Carcinoma, Squamous Cell/pathology , Humans , Mouth Neoplasms/microbiology , Squamous Cell Carcinoma of Head and Neck , Tobacco, Smokeless/adverse effects
18.
Front Cell Infect Microbiol ; 12: 841465, 2022.
Article in English | MEDLINE | ID: mdl-35433507

ABSTRACT

Oral cancer is a globally widespread cancer that features among the three most prevalent cancers in India. The risk of oral cancer is elevated by factors such as tobacco consumption, betel-quid chewing, excessive alcohol consumption, unhygienic oral condition, sustained viral infections, and also due to dysbiosis in microbiome composition of the oral cavity. Here, we performed an oral microbiome study of healthy and oral cancer patients to decipher the microbial dysbiosis due to the consumption of smokeless-tobacco-based products and also revealed the tobacco-associated microbiome. The analysis of 196 oral microbiome samples from three different oral sites of 32 healthy and 34 oral squamous cell carcinoma (OSCC) patients indicated health status, site of sampling, and smokeless tobacco consumption as significant covariates associated with oral microbiome composition. Significant similarity in oral microbiome composition of smokeless-tobacco-consuming healthy samples and OSCC samples inferred the possible role of smokeless tobacco consumption in increasing inflammation-associated species in oral microbiome. Significantly higher abundance of Streptococcus was found to adequately discriminate smokeless-tobacco-non-consuming healthy samples from smokeless-tobacco-consuming healthy samples and contralateral healthy site of OSCC samples from the tumor site of OSCC samples. Comparative analysis of oral microbiome from another OSCC cohort also confirmed Streptococcus as a potential marker for healthy oral microbiome. Gram-negative microbial genera such as Prevotella, Capnocytophaga, and Fusobacterium were found to be differentially abundant in OSCC-associated microbiomes and can be considered as potential microbiome marker genera for oral cancer. Association with lipopolysaccharide (LPS) biosynthesis pathway further confirms the differential abundance of Gram-negative marker genera in OSCC microbiomes.


Subject(s)
Carcinoma, Squamous Cell , Microbiota , Mouth Neoplasms , Dysbiosis/microbiology , Health Status , Humans , Mouth Neoplasms/microbiology , Tobacco Use/adverse effects
19.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408801

ABSTRACT

Periodontitis, a chronic inflammatory disease is caused by a bacterial biofilm, affecting all periodontal tissues and structures. This chronic disease seems to be associated with cancer since, in general, inflammation intensifies the risk for carcinoma development and progression. Interactions between periodontal pathogens and the host immune response induce the onset of periodontitis and are responsible for its progression, among them Porphyromonas gingivalis (P. gingivalis), a Gram-negative anaerobic rod, capable of expressing a variety of virulence factors that is considered a keystone pathogen in periodontal biofilms. The aim of this study was to investigate the genome-wide impact of P. gingivalis W83 membranes on RNA expression of oral squamous carcinoma cells by transcriptome analysis. Human squamous cell carcinoma cells (SCC-25) were infected for 4 and 24 h with extracts from P. gingivalis W83 membrane, harvested, and RNA was extracted. RNA sequencing was performed, and differential gene expression and enrichment were analyzed using GO, KEGG, and REACTOME. The results of transcriptome analysis were validated using quantitative real-time PCR with selected genes. Differential gene expression analysis resulted in the upregulation of 15 genes and downregulation of 1 gene after 4 h. After 24 h, 61 genes were upregulated and 278 downregulated. GO, KEGG, and REACTONE enrichment analysis revealed a strong metabolic transcriptomic response signature, demonstrating altered gene expressions after 4 h and 24 h that mainly belong to cell metabolic pathways and replication. Real-time PCR of selected genes belonging to immune response, signaling, and metabolism revealed upregulated expression of CCL20, CXCL8, NFkBIA, TNFAIP3, TRAF5, CYP1A1, and NOD2. This work sheds light on the RNA transcriptome of human oral squamous carcinoma cells following stimulation with P. gingivalis membranes and identifies a strong metabolic gene expression response to this periodontal pathogen. The data provide a base for future studies of molecular and cellular interactions between P. gingivalis and oral epithelium to elucidate the basic mechanisms of periodontitis and the development of cancer.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Periodontitis , Carcinoma, Squamous Cell/genetics , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/microbiology , Periodontitis/microbiology , Porphyromonas gingivalis , RNA
20.
J Oral Pathol Med ; 51(5): 444-453, 2022 May.
Article in English | MEDLINE | ID: mdl-35362187

ABSTRACT

BACKGROUND: The potential association between Candida albicans (C. albicans) infection and oral squamous cell carcinoma (OSCC) has been noticed for a long time. Programmed death ligand-1 (PD-L1) is a key molecule of tumor immune escape and tumor progression. This study aimed to explore whether C. albicans could influence PD-L1 expression in OSCC in vitro and in mouse model. METHODS: OSCC cell lines (Cal27 and HN6) were infected with C. albicans for 2 and 24 h, then PD-L1 expression was detected by quantitative real-time polymerase chain reaction (RT-qPCR), western blot (WB), and flow cytometry (FCM). To identify the underlying mechanisms, PD-L1 expression in OSCC cells treated with heat-inactivated C. albicans or with biofilm metabolites derived from C. albicans were explored respectively. Meanwhile, signaling pathways involved in PD-L1 regulation were explored by RT-qPCR, and the candidate genes were verified by WB. Moreover, an OSCC mouse model induced by 4-nitroquinoline-1 oxide was used to further explore the role of C. albicans infection in PD-L1 expression in vivo. RESULTS: C. albicans and heat-inactivated C. albicans upregulated the PD-L1 expression in Cal27 and HN6 cells. Various signaling pathways involved in PD-L1 regulation were influenced by C. albicans infection. Among them, TLR2/MyD88 and TLR2/NF-κB pathways might participate in this process. Furthermore, PD-L1 expression in oral mucosa epithelium was upregulated by C. albicans infection in both normal and OSCC mice. CONCLUSIONS: This study suggests that C. albicans could induce upregulation of PD-L1 in OSCC in vitro and in mouse model, which might due to the activation of TLR2/MyD88 and TLR2/NF-κB pathways.


Subject(s)
B7-H1 Antigen , Candida albicans , Mouth Neoplasms , Animals , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Mice , Mouth Neoplasms/immunology , Mouth Neoplasms/microbiology , Mouth Neoplasms/pathology , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/microbiology , Squamous Cell Carcinoma of Head and Neck/pathology , Toll-Like Receptor 2 , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...